
142                                                                  The International Arab Journal of Information Technology, Vol. 13, No. 1A, 2016                                               
 

Performance Comparison of Neuro-Fuzzy Cloud 

Intrusion Detection Systems 
 

Sivakami Raja
1
 and Saravanan Ramaiah

2
 

1
Department of Information Technology, PSNA College of Engineering and Technology, India 

2
Department of Computer Science and Engineering, RVS Educational Trust's Group of Institutions, India 

 

Abstract: Cloud computing is a subscription-based service where we can obtain networked storage space and computer 

resources. Since, access to cloud is through internet, data stored in clouds are vulnerable to attacks from external as well as 

internal intruders. In order to, preserve privacy of the data in cloud, several intrusion detection techniques, authentication 

methods and access control policies are being used. The common intrusion detection systems are predominantly incompetent 

to be deployed in cloud environments due to their openness and specific essence. In this paper, we compare soft computing 

approaches based on type-1, type-2 and interval type-2 fuzzy-neural systems to detect intrusions in a cloud environment. Using 

a standard benchmark data from a Cloud Intrusion Detection Dataset (CIDD) derived from DARPA Intrusion Detection 

Evaluation Group of MIT Lincoln Laboratory, experiments are conducted and the results are presented in terms of mean 

square error. 

 

Keywords: Fuzzy neural networks, hybrid intelligent systems, intrusion detection, partitioning algorithms, pattern analysis. 

 

Received September 13, 2015; accepted October 18, 2015 published on line January 28, 2016 
  

1. Introduction 

In this present era of computing, information is a major 

asset for every organization. From the local area 

network to the currently available highly connected 

internet, the world is being benefited from the easiness 

of data storage and access. With the introduction of 

cloud computing, maintenance of data has also become 

a simple task. However, this flexibility introduces a 

problem of data security as a major issue. This is due 

to the fact that, intruders and hackers are also enjoying 

technologies for their security-threatening activities. 

Data security and privacy are very serious problems in 

the victory of an industry process. Hence, 

organizations are using different solutions to achieve 

data security. 
An efficient intrusion detection system should be 

fast, self-monitored, fault tolerant, easily configurable, 
difficult to cheat, available without interruption and 
free from false errors with an overhead as minimum as 
possible. Its aim is to evaluate information systems and 
to perform early detection of malicious activity for 
reducing the security risk to an acceptably low level. It 
should generate alarms when it detects intrusive 
activity. High false positive alarm rate may disrupt 
information availability whereas high false negative 
alarm rate may result in serious damage to the 
protected systems in the form of inappropriate access 
to sensitive information and data damaging. It involves 
the overhead in terms of storage and CPU time. This is 
due to the fact that the performance of IDS is based on 
the amount of sufficient log data, its continuous 
updates on them and the correct and quick detection of  

intrusion from the comparison between current activity 
of the user and the historical data. 

The rest of this paper is organized as follows: 
Section 2 outlines IDS in cloud. The concept of fuzzy 
neural architecture in intrusion detection is described 
in section 3 and our proposed method is described in 
section 4. Experimental results are presented in section 
5. Finally, section 6 concludes our work. 

 

2. Intrusion Detection in Cloud 

For the purpose of achieving a green world and also 
due to the invention of new technologies, paper-work 
is vanishing from existence and the concept of digital 
data is introduced and is gaining importance. Large 
amount of personal information and potentially secure 
data can be stored on computers. But this digital data 
may require hardware, software and networks for their 
storage and access which may lead to practical 
complexities. A potential solution to these issues is a 
cloud storage service. This service offers several 
benefits including user-friendly access, maintenance 
and sharing of large volume of data synchronization of 
various devices and more importantly cost efficiency. 
By subscribing to the cloud, the cloud consumer is 
surrendering some control to an external source. This 
distance between the user and the physical location of 
data creates a hurdle. The information stored on the 
cloud is precious to individuals with malicious motive. 
Many cloud providers have standard terms and 
conditions to answer these issues. Firewalls and 
encryption are the most commonly used technologies 
for providing security and privacy. But they may not 
be of enough efficiency to protect data against 



Performance Comparison of Neuro-Fuzzy Cloud Intrusion Detection Systems                                                                          143 

 

intrusions. However, they can be used at the earlier 
part of the intrusion detection process. It is essential to 
choose a cloud provider that considers the security of 
cloud users’ data as a major responsibility.  

Machine learning is one of the methods used to train 

the system for intrusion detection. In [2], an Intrusion 

Detection System (IDS) is modeled for networks using 

ANN and extended classifier system. A grid and cloud 

computing IDS [33] was proposed to detect attacks by 

using an audit system. This system used Artificial 

Neural Network (ANN) to train the system and a 

prototype is developed using a middleware called 

Grid-M at the University of Santa Catarina Brazil. An 

IDS with the central management approach [35] has 

been developed, addressing heterogeneity and 

virtualization features of cloud computing. A model 

based on hypervisor [31] has been proposed for 

protecting the system from different types of attacks in 

the infrastructure layer (IaaS) which proves 

improvement in the reliability and availability of the 

system. Various anomaly-based intrusion detection 

techniques [23] were employed, and offered an IDS 

named for SaaS with the conclusion that the anomaly-

based ID as a hopeful technique to be used in the 

application layer. In [5], an individual IDS is suggested 

for each user of cloud computing services where a 

single controller manages the instances of IDSs 

exploiting the knowledge base and ANN pattern 

matching techniques. The fully distributed intrusion 

detection system developed in [12] is of P2P network 

architecture, implementing hybrid detection techniques 

using network and host based audit data for cloud 

computing. Most of the current proposed techniques on 

cloud operate at each of the infrastructure, platform, 

and application layers independently, and support 

detection independent from other layers [28].  

Autonomic clouds have emerged as a result of 

employing autonomic computing techniques to cloud 

computing, resulting in fault tolerant and easy to 

operate cloud architectures and deployments. So 

autonomic computing solutions has contemporarily 

fascinated researchers to design, build and manage 

cloud intrusion detection engines with negligible 

human intervention. This system should be capable of 

accommodating its behavior to suit its context of use 

through methods of self-configuration, self-diagnosis, 

and self-healing [25]. An autonomic mechanism for 

anomaly detection in a cloud computing environment 

was proposed in [27]. This method provided a machine 

learning method for analyzing data, extracting features 

for dimensionality reduction, and detecting the nodes 

bearing abnormal behaviour. A virtualization-based 

NIDPS [8] for cloud computing environment which 

used network data flow monitoring and real time file 

integrity without any control over the host. Snort [32] 

was identified as a financially, technically and 

administratively easier tool to be implemented in small 

networks, but it is not cost efficient. 

3. Neuro-Fuzzy Model 

An ANN is a way of reasoning that is inspired by 

principles studied in neurons of the central nervous 

system of living things. It is a set of one or more layers 

of nodes interconnected by directed, weighted links 

and trained with desired input-output patterns through 

which it can learn weights on the links that provide the 

correct outputs for the training inputs and other similar 

inputs. The ANN can be used to create a Decision 

Support System (DSS) when sufficient training 

examples exist. Though it suffers from relatively slow 

learning process, the benefits are its learning, 

adaptation, fault-tolerance, parallelism and 

generalization. Fuzzy logic is a technique for the 

representation and handling of imprecise and vague 

information. A common approach of using fuzzy logic 

in a DSS is creating a fuzzy rule based system that can 

symbolize domain knowledge in the form or rules and 

can make numerical calculations. Except it takes a lot 

of time to design and tune the membership functions 

which quantitatively define these linguistic labels, it 

can achieve stable state in a quick time interval. And 

also it can reason with imprecise information. 

Unfortunately, it does not have an efficient learning 

algorithm to improve the member functions to 

minimize the output errors. To complement each of the 

above individual systems with their advantages, fuzzy 

neural systems or neuro-fuzzy models were developed 

as intelligent hybrid systems which are proving their 

effectiveness in a wide variety of real world 

applications.  

Neural-fuzzy systems take up type-1 fuzzy sets, 

which characterize uncertainties using numbers in the 

range [0, 1]. However, the context of the words that are 

used in the rules and the measurements that activate a 

type-1 system can be uncertain and the data used to 

tune the parameters of a type-1 fuzzy logic system may 

also be noisy [19]. Membership functions of type-1 

fuzzy sets are often very exact and require each 

element of the universal set to be assigned a particular 

real number. But, type-2 fuzzy sets allow modeling 

such uncertainties because their membership functions 

are expressed as type-1 fuzzy sets. The concept was 

proposed as a development of an ordinary fuzzy set 

[21, 22, 24, 38]. The centroid of a type-2 fuzzy set and 

a practical algorithm for its computation are developed 

[10, 11] for interval type-2 fuzzy sets. Inference 

involving interval type-2 fuzzy sets is simple and less 

time consuming than that involving type- 2 fuzzy sets. 

A complete theory for interval type-2 fuzzy sets, 

tuning of free parameters within interval type-2 fuzzy 

sets using training data are explained in [16]. In [15, 

20] interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy 

logic systems are explained and the implementation of 

interval type-2 fuzzy logic systems are explained in 

[26]. The application of type-2 fuzzy systems requires 

type reduction which reduces a type-2 fuzzy set to a 



144                                                                  The International Arab Journal of Information Technology, Vol. 13, No. 1A, 2016                     
 

type-1 fuzzy set followed by defuzzification of the 

resulting type-1 fuzzy set which gives the desired crisp 

number. 

 

4. Proposed Intrusion Detection System 

Figure 1 shows our proposed system of intrusion 

detection in cloud environment. For extracting fuzzy 

rules from a set of data (for Stage 1 shown in Figure 

1), several methods were proposed. 

 

Figure 1. Proposed IDS. 

A fuzzy partitioning method [17] is proposed to 

create a set of fuzzy rules from input-output data by 

dividing the input space into a set of subspaces. But it 

is hard to decide the locations of cuts and the time 

complexity is high. In a hybrid clustering and gradient 

descent approach [36], convergence is very slow when 

the amount of the training data is enormous. Another 

method [30] for extracting fuzzy rules from a set of 

training patterns is done by splitting the universe of the 

output variable into multiple clusters, and then by 

assigning a cluster to each of the training data 

according to the desired value of the output variable. 

The data of each cluster in the input set is partitioned. 

This process of partitioning is concluded according to a 

given criterion to prevent exaggerated partition. This 

method needs to solve the problem of overlapping 

among different clusters. 
For the construction of refined fuzzy rules from the 

initial set of fuzzy rules (for Stage 2 shown in Figure 
1), parameters of the rules have to be refined.  
Numerous methods for refining the parameters of type-
2 fuzzy rules were proposed. Type-2 Fuzzy Neural 
Network (T2FNN) [6, 34] is formed by combining 
type-2 fuzzy logic system and neural network using 

gradient descent for parameters refinement. A 
recurrent neural network for interval type-2 fuzzy rules 
using asymmetric Gaussian principal membership 
functions is proposed in [14] with the refining 
algorithm. A self-evolving interval IT2FNN [9] is 
proposed with online structure. This approach 
combines online clustering and rule-ordered Kalman 
filter algorithm. In [3], three interval type-2 fuzzy 
neural network architectures were proposed through 
gradient descent backpropagation and gradient descent 
with adaptive learning rate backpropagation for 
refining the parameters.  

To develop initial fuzzy rules from the given set of 
input-output training data, a self-constructing fuzzy 
clustering algorithm is applied to separate the training 
data into a group of fuzzy clusters. Then, these clusters 
are transformed into a rule base of type-2 fuzzy TSK 
IF-THEN rules. The clustering algorithm [7, 37] is a 
learning approach which follows incremental self-
construction. It partitions the training dataset into 
clusters through input-similarity and output-similarity 
tests. For each pattern, the similarity to each existing 
cluster is calculated to determine whether it has to be 
associated with an existing cluster or a new cluster has 
to be created. If the pattern is added into an existing 
cluster, the membership function of that cluster is 
revised. Else if a new cluster is created, and the 
corresponding membership functions is initialized.  

Assume the system to be modeled has k inputs a1, 

a2, …, ak, and one output b. The given training dataset 

contains r patterns [p1, d1], [p2, d2], …, [pr, dr] where 

pi=[p1i, p2i, …., pki] denotes the k  input values and dj 

denotes the corresponding desired output value of the 

j
th
 pattern, 1≤ j≤ r. Let n be the number of currently 

existing clusters represented by C1, C2, Cn. Initially no 

clusters exist and hence, n=0. Each cluster Ci has mean 

mi=[m1i, m2i, …, mki], deviation σi=[σ1i,  σ2i,  …, σki] and 

a height hi which is the average of the desired outputs 

of the patterns enclosed in the cluster. Let Si be the 

number of training patterns available in Si. 

For each pattern pi=[p1i, p2i, …., pki], 1≤ i≤ r, the 

similarity of pi to each existing cluster Cj, 1≤ j≤ n is 

calculated by ( )
2

1 exp
li ljk

lC ij

lj

p m
pµ

σ
=

−
∏= −

  
  
   

.  

This pattern pi clears the input similarity test on 

cluster Cj if ( )
C ij

pµ ρ≥ , where ρ is a predefined 

threshold and 0≤ ρ ≤1. The value of ρ decides the 

number of clusters in a directly proportional way. 

When ρ increases, it builds the boundaries of the 

Gaussian function sharper and hence clusters are 

formed in micro level. 
The output similarity of pattern pi to each existing 

cluster Cj is calculated by computing ej=|di-hj| and this 
pattern passes the output similarity test on cluster Cj   if 

( )j high low
e d dτ≤ − , where  dhigh  and dlow represent the 
highest and the lowest values of the desired outputs. 
The expression (dhigh - dlow) sets the limit on the 



Performance Comparison of Neuro-Fuzzy Cloud Intrusion Detection Systems                                                                          145 

 

maximum allowed deviation between the actual and 
the desired results during output similarity test. If the 
achieved result does not fall within this limit, it is 
concluded that the current pattern does not clear the 
output similarity test.  So, these two parameters put a 
restriction on the output similarity test to improve 
accuracy. Here,τ , 10 ≤≤ τ , is a predefined threshold. 
The value ofτ decides the number of clusters in an 
inversely proportional way. When τ  increases, the test 
gets tougher and less number of clusters will be 
created. 

If a pattern pi has not passed both tests for all 
clusters, then a new cluster Cn+1 is created by 
incrementing n by 1 and initializing mn to pi, σn to σ0 
and hn to di. On the contrary, if there are existing 
clusters on which pi has passed the similarity tests, the 
cluster with the largest membership degree g is chosen 
as Cg. Then mg, σg, and hg are modified according to 
the following four equations: 

1

1

v
S o og

l jl g jg jiv

jg v o

g g

p S m p
m

S S

=∑ × +
= =

−
 

 

(1) 

( )2

1

1

v
S vg

l jl jgv

jg v

g

p m

S
σ

=∑ −
=

−
 

 

(2) 

1

v
S g

lv l

g v

g

d
h

S

=∑
=  (3) 

1
v o

g g
S S= +  (4) 

Here, the superscripts o and v represent the values 
before and after modification. When all training 
patterns have been considered, we get a number of 
clusters that are then converted to type-2 fuzzy TSK 
IF-THEN rules. At first all data are normalized into the 
range [0, 1] and then each cluster Ci is converted into a 
type-2 fuzzy rule of the form: 

If a1 is iA1

~
 and a2 is iA2

~
and ak is kiA

~
Then, b is 

ci=ω0i+ ω1ia1+ …+ ωkiak where
1 2

, ,
i i ki

A A A% % %L are type-2 

fuzzy sets for a1, a2, …, ak and each ω is a real valued 

rule weight. The membership function of
ij

A% , 1≤i≤k, 

is ( ) ( ; ( ; , ),
p p s

A i i ij ij ijij
a gauss u gauss a mµ σ σ=

%
, where u[0, 

1]. Fuzzy systems comprise of several types of 

membership functions. Out of them, Gaussian 

membership function is used in our system due to its 

greater continuous smoother transition in intervals, 

straightforward learning laws and reduced degree of 

freedom. Additionally, it always has nonzero values. 

So, every rule in the rulebase gets fired. Hence, our 

system will not have dead rules. And more 

importantly, it provides the basic things to generate 

hybrid systems like fuzzy neural systems and gives 

more precise results. 
Each rule includes mean, deviation and the scaled 

deviation as its antecedent parameters and the rule 
weight as its consequent parameters. The weight is tied 
to a rule to determine a degree of fulfillment by 
multiplying with antecedents.  We proceed to improve 
the precision of these rules, by refining the antecedent 
and consequent parameters involved, through the 
application of a dynamical optimal learning algorithm. 
An iteration of learning involves the presentation of all 
training patterns. In each iteration of learning, we first 
treat all the consequent parameters as fixed to refine 
the antecedent parameters. Then we treat all the 
antecedent parameters as fixed and use to refine the 
consequent parameters. The process is iterated until the 
desired approximation precision is achieved. Due to 
the computational complexity in using type-2 fuzzy 
sets, interval type-2 fuzzy sets (IT2FNN) are used. As 
mentioned earlier, we treat all the consequent 
parameters as fixed and use interval type-2 fuzzy 
neural network architecture with gradient descent 
learning to refine the antecedent parameters. To refine 
consequent parameters, we treat all antecedent 
parameters as fixed.  The objective function to be 
optimized is the mean square error (MSE) with respect 
to the training patterns. By using the BP method, for   
input-output training data [pj:dj], j=1, 2, …, r the 
following error function can be minimized: 

( )
21

2
j j j

e y p d= −    (5) 

We use Equation 6 to refine mean and a similar type of 
equation is used to refine standard deviation by 
keeping the weight as fixed. 

( ) ( )

( )( )( ) ( )

( )

( )

1 1

1 1

2

1 1 1

1 1

1

, ;

2

i i

j j

i i i

l l jl j j j jl

i

j

t

q i

i i
L M

i i L

m l m l

y p d p m N m p

u yiAq
q j

f f

α σ

σ

ω=

= = +

+ = −

− −

∏ −

≠
×

∑ ∑+

 
 
 
 

  
  
    

 
 

%

 (6) 

Equations 7 and 8 are used to tune consequent 
parameters by keeping antecedent parameters fixed. 

If i≤ L,   

( ) ( )

( )( )
1 1

1

1 1

1

2

i i

t i
ql l q

i i
L M
i i L

l l

y p d u A

f f

ω ω

α
=

= = +

+ =

− ∏
−

∑ ∑+

  
   

  

%
 

(7) 

if i L> ,  

( ) ( )

( )( )
1 1

1

1 1

1

2

i i

t

q
l l

i
L M
i i L

l l

iuy p d Aq

i
f f

ω ω

α
=

= = +

+ =

∏−
−

∑ ∑+

  
     

%  (8) 

 



146                                                                  The International Arab Journal of Information Technology, Vol. 13, No. 1A, 2016                     
 

where α is the learning rate parameter, M is the total 

number of rules in the rule base of the T2FNN, L and R 

obtained from the iterative Karnik-Mendel procedure, t  

is the number of inputs to rule i of the T2FNN, 

( )i
A jq

u p%  and ( )i
Aq j

u p%  are the lower and upper 

membership function values of pj to the interval type-2 

fuzzy set 
i

q
A% ,  and * is the product t-norm. Here: 

( )
2

1
, ; exp

2

i

j ji i

j j j i

j

p m
N m pσ

σ

−
= −

  
  
   

 (9) 

( ) ( ) ( )
1 21 2

i

ni i in
f u p u p u pA A A= ∗ ∗ ∗L  

( )
1

t

i
qq

q

u pA
=

∏=  (10) 

and  

( ) ( ) ( )1 21 2

i

i i in n
f u p u p u pA A A= ∗ ∗ ∗L  

( )
1

t

i
q q

q

u pA
=

∏=  (11) 

After the system is trained, it can be used for detecting 
intrusions in real-time. When the cloud user requires 
access to the service, his/her pattern of activity is 
checked against fuzzy rulebase. Inference from this 
comparison is used in making decisions regarding 
intrusions, after type reduction and Defuzzification. 

 

5. Experimental Results 

The original data set is of size 744MB with 4,940,000 
records. Using all 41 variables could result in a big 
IDS model with increased computation time, which 
could be an overhead for online detection. Moreover, if 
the dataset contains unrelated features, analysis will be 
difficult to detect suspicious behaviors. IDS must 
therefore reduce the amount of data to be processed. 
The technique of omitting one feature at a time is 
employed in [29]. Each diminished feature set was 
then experimented on support vector machines and 
neural networks to grade the importance of input 
features and found that by using only 19 of the most 
influential features, change in accuracy of intrusion 
detection was trivial. The simplest way to do this is by 
doing an intelligent input feature selection which 
improves classification by searching for the subset of 
features using data mining techniques including 
Bayesian networks and Classification and Regression 
Trees (CART). So the number of variables is reduced 
to 12 [1, 4]. Conditional mutual information based 
feature selection is suggested in [18]. Features in the 
datasets are of different forms such as symbolic, 
discrete, and continuous. Most pattern classification 
methods are not capable to process data in such a 
format. So, each of the mapped features is linearly 
scaled to the range [0, 1] by preprocessing. 

Input feature selection is vital to design efficient 
IDS for real world detection systems. Current dataset 

cannot be used due to the assortment of user 
requirements, the distinct operating systems installed 
in the virtual machines, and the data size of cloud 
systems. So, a Log Analyzer and Correlator System 
(LACS)  [13]  has  been  applied  to  the  logs  from the 
DARPA Intrusion Detection Evaluation Group of MIT 
Lincoln Laboratory to generate Cloud Intrusion 
Detection Dataset (CIDD) that consists of both 
knowledge and behavior based audit data collected 
from both UNIX and Windows users. The data set for 
our experiments encloses 11,982 records made at 
random, having 12 features. This dataset has the same 
distribution of attacks as “10% KDD” dataset. The 
training set includes 8,988 samples and the remaining 
2,994 samples build the test set. 

The results of experiments are explained by 
comparing the detection rate values of type-1, type-2 
and interval type-2 fuzzy neural systems on CIDD 
dataset. In our system, for the measurement of the 
input similarity, we use a predefined threshold ρ, 
where we may have two cases. In a first case, when ρ 
increases, the number of clusters also gets increased, 
resulting in large number of smaller clusters. So, the 
patterns in a cluster are needed to be more analogous to 
each other. Besides that, there is a possibility for 
overlapping of clusters, where a single pattern may 
belong to more than one cluster. It makes the test hard. 
So, for a single input pattern, several fuzzy rules may 
be fired. On the other case, when ρ decreases, the 
number of clusters decrease, resulting in small number 
of larger clusters. So, a typical cluster may include 
patterns of considerable dissimilarity. Moreover, less 
number of larger clusters will lead to a situation of 
having significant gap between clusters. Hence, when 
an input pattern is presented to the detection system, 
there may not be any cluster corresponding to that 
pattern. So an abnormal activity may go undetected. 
Both these cases are not optimal. So, we conducted 
experiments by having constant τ and σ0(τ=0.5 and 
σ0=0.2) for three different ρ values (0.0000007, 
0.0000128, and 0.0002187). Results are explained by 
comparing the detection rate values of type-1, type-2 
and interval type-2 fuzzy neural systems on CIDD 
dataset and illustrated in Table 1. As can be seen from 
the table, T2FNN achieves significantly better 
accuracy on all classes.  

Table 1. Performance comparison between T1FNN, T2FNN and 
IT2FNN in ID. 

Pattern 

Accuracy % 

( ρ = 0.0000007) 

Accuracy % 

( ρ = 0.0000128) 

Accuracy % 

( ρ = 0.0002187) 

IT2FNN T2FNN T1FNN IT2FNN T2FNN T1FNN IT2FNN T2FNN T1FNN 

Normal 99.86 99.99 99.71 99.73 99.89 99.12 99.96 100 99.53 

Probe 99.90 99.99 99.86 99.81 99.96 99.06 99.93 99.96 99.75 

DoS 99.95 99.96 99.96 99.65 99.75 98.97 99.76 99.82 99.65 

U2R 87.82 90.12 80.72 86.40 90.50 85.63 88.10 89.90 85.01 

R2L 99.81 99.77 99.64 99.12 99.52 98.76 99.92 99.94 98.96 

Figure 2 shows the results in terms of Mean Square 

Error (MSE) measured during these experiments for 

the above mentioned values of parameters. In all cases, 

as seen from Figure 2, T2FNN attains the best MSE for 

the testing data. 



Performance Comparison of Neuro-Fuzzy Cloud Intrusion Detection Systems                                                                          147 

 

M
S

E
 

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

( ρ = 0.0000007) ( ρ = 0.0000128) ( ρ = 0.0002187)

IT2FNN

T2FNN

T1FNN

 

Figure 2. Results with different ρ values. 

Next, we conducted experiments based on output 
similarity test by fixing ρ=0.0000001 and σ0=0.2 for 
three different τ values (0.4, 0.5, and 0.6). The setting 
of τ will also have an effect on the number of clusters 
obtained. Smaller τ results in large number of smaller 
clusters. Conversely, when τ increases, the number of 
clusters decreases, resulting in small number of larger 
clusters. Hence the circumstances discussed previously 
in setting ρ value take place here also. The results of 
these experiments in terms of MSE are given in Figure 
3. But in all cases, it appears that, T2FNN gives the 
best MSE. 

M
S

E
 

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

τ=0.4 τ=0.5 τ=0.6

IT2FNN

T2FNN

T1FNN

 
Figure 3. Results with different τ values. 

Finally, Figure 4 shows the results of experiments 

with ρ=0.0000001 and τ=0.5for three different σ0 

values (0.15, 0.2, and 0.25). Here, σ0 is the initial value 

for the deviation to create a new cluster, if no cluster 

exists to represent the incoming pattern. When the 

pattern has not passed both similarity tests, a new 

cluster is created to represent that pattern. This cluster 

has only one pattern and hence its deviation is zero, 

which could not be in fuzzy similarity calculation. So 

σ0 is used to initialize its deviation. As new patterns are 

added into this cluster, its deviation along with other 

parameters is updated according to equations from (1- 

4). Similar to previous discussions, σ0 may affect the 

number of clusters. As σ0 decreases, the patterns in a 

cluster are required to be more similar to each other 

and thus the number of clusters obtained increases. 

Again, T2FNN achieves the best MSE for the testing 

data. 

M
S

E
 

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

σ0=0.15 σ0=0.2 σ0=0.25

IT2FNN

T2FNN

T1FNN

 
Figure 4. Results with different σ0 values. 

6. Conclusions 

In this paper, we have compared three fuzzy neural 

systems based on type-1, type-2 and interval type-2 

fuzzy sets for modeling intrusion detection system in a 

cloud. The intrusion detection training dataset is 

partitioned into several clusters with similar patterns 

belonging to same cluster. Each of the resulting 

clusters is defined with the membership functions by 

statistical means and deviations. One fuzzy TSK-rule is 

derived from each cluster. A fuzzy neural network is 

constructed accordingly and the associated parameters 

are refined with dynamical optimal learning. For a new 

input from the test data set, a corresponding crisp 

output of the system is obtained by combining the 

inferred results of all the rules. This result is compared 

with the desired result based on which MSE values are 

calculated. In all cases, T2FNN achieves best MSE 

than IT2FNN and T1FNN. 

 

Acknowledgment 

The authors would like to express thanks to the 

anonymous reviewers for their comments, who were 

very supportive in improving the quality and 

presentation of this paper. 

References 

[1] Abraham A. and Jain R., “Soft Computing 

Models for Network Intrusion Detection 

Systems,” Classification and Clustering for 

Knowledge Discovery, Studies in Computational 

Intelligence, vol. 4, pp.191-207, 2005.  

[2] Alsharafat W., “Applying Artificial Neural 

Network and eXtended Classifier System for 

Network Intrusion Detection,” the International 

Arab Journal of Information Technology, vol. 10, 

no. 3, pp. 230-238, 2013. 

[3] Castro J., Castillo O., Melin P., and Rodríguez-

Díaz A., “A Hybrid Learning Algorithm for a 

Class of Interval Type-2 Fuzzy Neural 

Networks,” Information Sciences, vol. 179, no. 

13, pp. 2175-2193, 2009. 

[4] Chebrolu S., Abraham A., and Thomas J., 

“Feature Deduction and Ensemble Design of 

Intrusion Detection Systems,” Computers and 

Security, vol. 24, no. 4, pp. 295-307,  2004. 

[5] Dhage S.N., Meshram B.B., Rawat R., Padawe 

S., Paingaokar M., and Misra A., “Intrusion 

Detection System in Cloud Computing 

Environment,” in Proceedings of International 

Conference & Workshop on Emerging Trends in 

Technology, New York, USA, pp. 235-239, 2011. 

[6] Hagras H., “Comments on Dynamical Optimal 

Training for Interval Type-2 Fuzzy Neural 

Network (T2FNN),” IEEE Transaction on 

System Man, Cybernetics, Part B: Cybernetics, 

vol. 36, no. 5, pp. 1206-1209, 2006. 



148                                                                  The International Arab Journal of Information Technology, Vol. 13, No. 1A, 2016                     
 

[7] Jiang J., Liou R., and Lee S., “A Fuzzy Self-

Constructing Feature Clustering Algorithm for 

Text Classification,” IEEE Transactions on 

Knowledge and Data Engineering, vol. 23, no. 3 

pp. 335-349, 2011. 

[8] Jin H., Xiang G., Zou D., Wu S., Zhao F., Li M., 

Zheng W., “A VMM-based Intrusion Prevention 

System in Cloud Computing Environment,” The 

Journal of Super- Computing, vol. 66, no. 3, pp. 

1133-1151, 2011. 

[9] Juang C. and Tsao Y., “A self-evolving interval 

type-2 fuzzy neural network with online structure 

and parameter learning,” IEEE Transaction 

Fuzzy System, vol. 16, no. 6, pp. 1411-1424, 

2008. 

[10] Karnik N. and Mendel J., “Centroid of a Type-2 

Fuzzy Set,” Information Sciences, vol. 132, no. 

1-4, pp. 195-220, 2001. 

[11] Karnik N., Mendel J., and Liang Q., “Type-2 

Fuzzy Logic Systems,” IEEE Transaction Fuzzy 

System, vol. 7, no. 6, pp. 643-658, 1999.   

[12] Kholidy H. and Baiardi F., “CIDS: A Framework 

for Intrusion Detection in Cloud Systems,” in 

Proceedings of  the 9
th
 International Conference 

on Information Technology: New Generations 

(ITNG), LasVegas, pp. 379-385, 2012. 

[13] Kholidy H. and Baiardi F., “CIDD: A Cloud 

Intrusion Detection Dataset for Cloud Computing 

and Masquerade Attacks,” in Proceedings of  the 

9
th
 International Conference on Information 

Technology-New Generations, Las Vegas, USA, 

pp. 397-402, 2012. 

[14] Lee C., Hu T., Lee C., and Lee Y., “A Recurrent 

Interval Type-2 Fuzzy Neural Network with 

Asymmetric Membership Functions for 

Nonlinear System Identification,” in Proceedings 

of IEEE International Conference Fuzzy System, 

Hong Kong, pp. 1496-1502, 2008.  

[15] Liang Q. and Mendel J., “Equalization of 

Nonlinear Time-Varying Channels Using Type-2 

Fuzzy Adaptive Filters,” IEEE Transaction Fuzzy 

System, vol. 8, no. 5, pp. 551-563, 2000. 

[16] Liang Q. and Mendel J., “Interval Type-2 Fuzzy 

Logic Systems: Theory and Design,” IEEE 

Transaction Fuzzy System, vol. 8, no. 5, pp. 535-

550, 2000.  

[17] Lin Y., Cunningham G., and Coggeshall S., 

“Using Fuzzy Partitions to Create Fuzzy Systems 

from Input-Output Data and Set the Initial 

Weights in a fuzzy neural network,” IEEE 

Transaction Fuzzy System, vol. 5, no. 4, pp. 614-

621, 1997. 

[18] Liu H., Mo Y., and Zhao J., “Conditional 

Dynamic Mutual Information-Based Feature 

Selection,” Computing and Informatics, vol. 31, 

no. 6, pp. 1193-1216, 2012. 

[19] Mendel J. and John R., “Type-2 Fuzzy Sets Made 

Simple,” IEEE Transactions On Fuzzy Systems, 

vol. 10, no. 2, pp. 117-127, 2002. 

[20] Mendel J., “Uncertain Rule-Based Fuzzy Logic 

Systems: Introduction and New Directions,” 

available at: http://sipi.usc.edu/~mendel/book/, 

last visited 2001. 

[21] Mizumoto M. and Tanaka K., “Some Properties 

of Fuzzy Sets of Type-2,” Information and 

Control, vol. 31, no. 4, pp. 312-340, 1976. 

[22] Mizumoto M., “Fuzzy Sets and Type 2 Under 

Algebraic Product and Algebraic Sum,” Fuzzy 

Sets and Systems, vol. 5, no. 3, pp. 277-290, 

1981. 

[23] Nascimento G. and Correia M., “Anomaly-based 

Intrusion Detection in Software as a Service,” in 

Proceedings of 41
st
 International Conference on 

Dependable Systems and Networks Workshops, 

pp. 19-24, 2011. 

[24] Nieminen J., “On the Algebraic Structure of 

Fuzzy Sets of type-2,” Kybernetica, vol. 13, no. 

4, pp. 261-273, 1977. 

[25] Patel A., Qassim Q., Shukor Z., Nogueira J., 

Junior J., and Wills C., “Autonomic Agent-Based 

Self-Managed Intrusion Detection and Prevention 

System,” in Proceedings of South African 

Information Security Multi-Conference, Port 

Elizabeth, South Africa, pp. 223-234, 2009. 

[26] Sepúlveda R., Castillo O., Melin P., and Montiel 

O., “An Efficient Computational Method to 

Implement Type-2 Fuzzy Logic in Control 

Applications,” Analysis and Design of Intelligent 

Systems using Soft Computing Techniques, vol. 

41, pp. 45-52, 2007. 

[27] Smith D., Guan Q., and Fu S., “An Anomaly 

Detection Framework for Autonomic 

Management of Compute Cloud Systems,” in 

Proceedings of the 34
th
 Annual Computer 

Software and Applications Conference 

Workshops, Seoul, pp. 376-381, 2010. 

[28] Subashini S. and Kavitha V., “A Survey on 

Security Issues in Service Delivery Models of 

Cloud Computing,” Journal of Network and 

Computer Applications, Elsevier, vol.34, no. 1, 

pp. 1-11, 2011. 

[29] Sung A. and Mukkamala S., “Feature Selection 

for Intrusion Detection using Neural Networks 

and Support Vector Machines,” available at: 

http://www.ltrc.lsu.edu/TRB_82/TRB2003-

002459.pdf, last visited 2003.  

[30] Thawonmas R. and Abe S., “Function 

Approximation based on Fuzzy Rules Extracted 

from Partitioned Numerical Data,” IEEE 

Transaction on System Man, Cybernetics, Part B: 

Cybernetics, vol. 29, no. 4, pp. 525-534, 1999. 

[31] Tupakula U., Varadharajan V., and Akku N., 

“Intrusion Detection Techniques for 

Infrastructure as a Service Cloud,” in 

Proceedings of the 9
th
 IEEE International 

Conference on Dependable, Autonomic and 



Performance Comparison of Neuro-Fuzzy Cloud Intrusion Detection Systems                                                                          149 

 

Secure Computing, Sydney, NSW, pp. 744-751, 

2011.  

[32] Vanathi R. and Gunasekaran S., “Comparison of 

Network Intrusion Detection Systems in Cloud 

Computing Environment,” in Proceedings of 

International Conference on Computer 

Communication and Informatics (ICCCI), 

Coimbatore, pp. 1-6, 2012. 

[33] Vieira K., Schulter A., Westphall C., and 

Westphall C., “Intrusion Detection for Grid and 

Cloud Computing,” IT Professional, vol. 12, no. 

4, pp. 38-43, 2010. 

[34] Wang C., Cheng C., and Lee T., “Dynamical 

Optimal Training for Interval Type-2 Fuzzy 

Neural Network (T2FNN),” IEEE Transaction on 

System Man, Cybernetics, Part B: Cybernetics, 

vol. 34, no. 3, pp. 1462-1477, 2004. 

[35] Wang X., Ting-lei H., and Xiao-yu L., “Research 

on the Intrusion Detection Mechanism based on 

Cloud Computing,” in Proceedings of 

International Conference on Intelligent 

Computing and Integrated Systems (ICISS), 

Guilin, pp. 125-128, 2010. 

[36] Wong C. and Chen C., “A Hybrid Clustering and 

Gradient Descent Approach for Fuzzy 

Modeling,” IEEE Transaction on System Man, 

Cybernetics, Part B: Cybernetics, vol. 29, no. 6, 

pp. 686-693, 1999. 

[37] Yeh C., Jeng W., and Lee S., “Data-Based 

System Modeling Using a Type-2 Fuzzy Neural 

Network with a Hybrid Learning Algorithm,” 

IEEE Transactions on Neural Networks, vol. 22, 

no. 12, pp. 2296-2309, 2011. 

[38] Zadeh L., “The Concept of a Linguistic Variable 

and its Application to Approximate Reasoning-

I,” Information Sciences. vol. 8, no. 3, pp. 199-

249, 1975. 

 

Sivakami Raja received BE degree 

from the Department of Computer 

Science and Engineering, Madurai 

Kamaraj University, India, in 2002 

and ME degree from the Department 

of Information and Communication 

Engineering, Anna University, 

Chennai, in 2006. Currently, she is an Associate 

Professor in the department of Information 

Technology, PSNA College of Engineering and 

Technology, Dindigul, Tamilnadu, India. Her research 

interest includes data mining, information security and 

cloud computing. 

 

 

 

Saravanan Ramaiah received BE 

degree in Electrical and Electronics 

Engineering from Thiagarajar 

College of Engineering, India, in 

1994, ME in Computer Science and 

Engineering from Madurai Kamaraj 

University, India, in 2000 and the 

PhD in Distributed Computing from Anna University, 

in 2010. Currently, he is a Director in RVS 

Educational Trust’s Group of Institutions, Dindigul, 

Tamilnadu, India. His research interest includes 

distributed computing, information security and mobile 

computing. 

 

 

 


